skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Russell, Thomas_P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As a class of semiconductor nanocrystals that exhibit high photoluminescence quantum yield (PLQY) at tunable wavelengths, perovskite nanocrystals (PNCs) are attractive candidates for optoelectronic and light‐emitting devices. However, attempts to optimize PNC integration into such applications suffer from PNC instability and loss of PL over time. Here, we describe the impact of organic and polymeric N‐oxides when used in conjunction with PNCs, whereby a significant increase in PNC quantum yield is observed in solution, and stable PL emission is obtained in polymeric nanocomposites. Specifically, when using aliphatic N‐oxides in ligand exchange with CsPbBr3PNCs in solution, a substantial boost in PNC brightness is observed (~40% or more PLQY increase), followed by an alteration of the perovskite chemistry. When N‐oxide substituents are positioned pendent to a poly(n‐butyl methacrylate) backbone, the optically clear flexible nanocomposite films obtained have bright PL emission and maintain optical clarity for months. X‐ray diffraction is useful for characterizing the PNC crystalline structure following exposure to aliphatic N‐oxides, while electron microscopy (EM) and small‐angle X‐ray scattering (SAXS) measurements of the PNC‐polymer nanocomposites show this polymeric N‐oxide platform to cleanly disperse PNCs in flexible polymer films. 
    more » « less
  2. Abstract Visualizing the network of a solvent‐swollen polymer gel remains problematic. To address this challenge, open transmission electron microscopy (TEM) was applied to thin gel films permeated by a nonvolatile ionic liquid. The targeted physical gels were prepared by cooling concentrated solutions of poly(ethylene glycol) in 1‐ethyl‐3‐methyl imidazolium ethyl sulfate [EMIM][EtSO4]. During the cooling, gelation occurred by a frustrated crystallization of the dissolved polymer, leading to a percolated, solvent‐permeated semicrystalline network in which nanoscale polymer crystals acted as crosslinks. Crystalline features ranging from ~5 to ~200 nm were observed, with the visible network strands dominantly consisting of long curvilinear crystallites of ~15–20 nm diameter. Nascent spherulites irregularly decorated the network, creating a complex structural hierarchy that complicated analyses. Lacking diffraction contrast, TEM did not visualize the many disordered, fully solvated PEG chains present in the voids between crystals. Recognizing that a network's three dimensionality is ambiguous when assessed through two‐dimensional microscopy projections, a small gel region was studied by TEM tomography, revealing a nearly isotropic three‐dimensional arrangement of the curvilinear crystallites, which displayed remarkably uniform cylindrical cross sections. 
    more » « less
  3. Abstract An active droplet system, programmed to repeatedly move autonomously at a specific velocity in a well‐defined direction, is demonstrated. Coulombic energy is stored in oversaturated interfacial assemblies of charged nanoparticle‐surfactants by an applied DC electric field and can be released on demand. Spontaneous emulsification is suppressed by an increase in the stiffness of the oversaturated assemblies. Rapidly removing the field releases the stored energy in an explosive event that propels the droplet, where thousands of charged microdroplets are ballistically ejected from the surface of the parent droplet. The ejection is made directional by a symmetry breaking of the interfacial assembly, and the combined interaction force of the microdroplet plume on one side of the droplet propels the droplet distances tens of times its size, making the droplet active. The propulsion is autonomous, repeatable, and agnostic to the chemical composition of the nanoparticles. The symmetry‐breaking in the nanoparticle assembly controls the microdroplet velocity and direction of propulsion. This mechanism of droplet propulsion will advance soft micro‐robotics, establishes a new type of active matter, and introduces new vehicles for compartmentalized delivery. 
    more » « less
  4. Abstract Two donor–acceptor (D–A) polymers are obtained by coupling difluoro‐ and dichloro‐substituted forms of the electron‐deficient unit BDOPV and the relatively weak donor moiety dichlorodithienylethene (ClTVT). The conductivity and power factors of doped devices are different for the chlorinated and fluorinated BDOPV polymers. A high electron conductivity of 38.3 and 16.1 S cm−1are obtained from the chlorinated and fluorinated polymers with N‐DMBI, respectively, and 12.4 and 2.4 S cm−1are obtained from the chlorinated and fluorinated polymers with CoCp2, respectively, from drop‐cast devices. The corresponding power factors are 22.7, 7.6, 39.5, and 8.0 µW m−1K−2, respectively. Doping of PClClTVT with N‐DMBI results in excellent air stability; the electron conductivity of devices with 50 mol% N‐DMBI as dopant remained up to 4.9 S m−1after 222 days in the air, the longest for an n‐doped polymer stored in air, with a thermoelectric power factor of 9.3 µW m−1K−2. However, the conductivity of PFClTVT‐based devices can hardly be measured after 103 days. These observations are consistent with morphologies determined by grazing incidence wide angle X‐ray scattering and atomic force microscopy. 
    more » « less
  5. Abstract A pre‐formed Meisenheimer complex of a naphthalenediimide (NDI) with tetrabutylammonium fluoride (TBAF) is obtained in a simple way by mixing dibrominated 4,9‐dibromo‐2,7‐bis(2‐octyldodecyl)benzo[lmn][3,8]phenanthroline‐1,3,6,8(2H,7H)‐tetraone and TBAF in solution and used as a dopant for n‐type organic thermoelectrics. Two n‐type polymers PNDIClTVT and PBDOPVTT are synthesized, n‐doped, and characterized as conductive and thermoelectric materials. PNDIClTVT doped with NDI‐TBAF presents a high σ value of 0.20 S cm–1, a Seebeck coefficient (S) of −1854 µV K–1, and a power factor (PF) of 67 µW m–1K–2, among the highest reported PF in solution‐processed conjugated n‐type polymer thermoelectrics. Using 4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine and NDI‐TBAF as co‐dopants, PNDIClTVT has a PF > 35 µW m–1K–2; while for PBDOPVTT σ = 0.75 S cm–1and PF = 58 µW m–1K–2. In this study it is found that an ionic adduct together with a neutral dopant improves the performance of n‐type organic thermoelectrics leading to an enhanced power factor, and more generally, the role of such an adduct in polymer doping is also elucidated. 
    more » « less